Geometria finita, curvas algébricas e Aplicações à teoria de códigos
Construção, decodificação e implementação de códigos F_q lineares. Performance de ...
Uma abordagem algébrica e geométrica dos códigos lineares, cíclicos e BCH
Texto completo | |
Autor(es): |
Número total de Autores: 4
|
Afiliação do(s) autor(es): | [1] Univ Estadual Campinas, Inst Matemat Estat & Comp Cient, Campinas - Brazil
[2] Univ Alacant, Dept Matemat, Alacant - Spain
[3] Carleton Univ, Sch Math & Stat, Ottawa, ON - Canada
Número total de Afiliações: 3
|
Tipo de documento: | Artigo Científico |
Fonte: | Advances in Mathematics of Communications; v. 14, n. 3, p. 437-453, AUG 2020. |
Citações Web of Science: | 0 |
Resumo | |
In this paper we construct F-2-linear codes over F-2(b) with length n and dimension n - r where n = rb. These codes have good properties, namely cyclicity, low density parity-check matrices and maximum distance separation in some cases. For the construction, we consider an odd prime p, let n = p - 1 and utilize a partition of Z(n). Then we apply a Zech logarithm to the elements of these sets and use the results to construct an index array which represents the parity-check matrix of the code. These codes are always cyclic and the density of the parity-check and the generator matrices decreases to 0 as n grows (for a fixed r). When r = 2 we prove that these codes are always maximum distance separable. For higher r some of them retain this property. (AU) | |
Processo FAPESP: | 16/50476-0 - Efficiency and security of pre and post quantum cryptographic methods: theory and applications |
Beneficiário: | Ricardo Dahab |
Modalidade de apoio: | Auxílio à Pesquisa - Regular |