Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

The cone percolation model on Galton-Watson and on spherically symmetric trees

Texto completo
Autor(es):
Junior, Valdivino V. [1] ; Machado, Fabio P. [2] ; Ravishankar, Krishnamurthi [3]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Fed Goias, Campus Samambaia, Goiania, Go - Brazil
[2] Univ Sao Paulo, Inst Math & Stat, Rua Matao 1010, BR-05508090 Sao Paulo, SP - Brazil
[3] NYU ECNU Inst Math Sci NYU Shanghai, 3663 Zhongshan Rd North, Shanghai 200062 - Peoples R China
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS; v. 34, n. 3, p. 594-612, AUG 2020.
Citações Web of Science: 0
Resumo

We study a rumor model from a percolation theory and branching process point of view. It is defined according to the following rules: (1) at time zero, only the root (a fixed vertex of the tree) is declared informed, (2) at time n + 1, an ignorant vertex gets the information if it is, at a graph distance, at most R-v of some its ancestral vertex v, previously informed. We present relevant lower and upper bounds for the probability of that event, according to the distribution of the random variables that defines the radius of influence of each individual. We work with (homogeneous and non-homogeneous) Galton-Watson branching trees and spherically symmetric trees which includes homogeneous and k-periodic trees. We also present bounds for the expected size of the connected component in the subcritical case for homogeneous trees and homogeneous Galton-Watson branching trees. (AU)

Processo FAPESP: 17/10555-0 - Modelagem estocástica de sistemas interagentes
Beneficiário:Fabio Prates Machado
Modalidade de apoio: Auxílio à Pesquisa - Temático