Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Identification of Copper in Stems and Roots of Jatropha curcas L. by Hyperspectral Imaging

Texto completo
Autor(es):
Garcia-Martin, Juan Francisco [1] ; Badaro, Amanda Teixeira [2, 3] ; Barbin, Douglas Fernandes [2] ; Alvarez-Mateos, Paloma [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Seville, Fac Quim, Dept Ingn Quim, Seville 41012 - Spain
[2] Univ Campinas UNICAMP, Dept Food Engn, BR-13083862 Campinas - Brazil
[3] Univ Politecn Valencia, Dept Tecnol Alimentos, Camino Vera S-N, Valencia 46022 - Spain
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: PROCESSES; v. 8, n. 7 JUL 2020.
Citações Web of Science: 0
Resumo

The in situ determination of metals in plants used for phytoremediation is still a challenge that must be overcome to control the plant stress over time due to metals uptake as well as to quantify the concentration of these metals in the biomass for further potential applications. In this exploratory study, we acquired hyperspectral images in the visible/near infrared regions of dried and ground stems and roots ofJatropha curcasL. to which different amounts of copper (Cu) were added. The spectral information was extracted from the images to build classification models based on the concentration of Cu. Optimum wavelengths were selected from the peaks and valleys showed in the loadings plots resulting from principal component analysis, thus reducing the number of spectral variables. Linear discriminant analysis was subsequently performed using these optimum wavelengths. It was possible to differentiate samples without addition of copper from samples with low (0.5-1% wt.) and high (5% wt.) amounts of copper (83.93% accuracy, >0.70 sensitivity and specificity). This technique could be used after enhancing prediction models with a higher amount of samples and after determining the potential interference of other compounds present in plants. (AU)

Processo FAPESP: 17/17628-3 - Análise de imagens e espectroscopia de infravermelho próximo (NIR) na avaliação de qualidade e autenticação de alimentos
Beneficiário:Amanda Teixeira Badaró
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto
Processo FAPESP: 19/06842-0 - Técnicas de imagem para determinação da composição de macarrão durante cozimento
Beneficiário:Amanda Teixeira Badaró
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado Direto