Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Graphene-based nanoscale version of da Vinci's reciprocal structures

Texto completo
Autor(es):
Fonseca, Alexandre F. [1] ; Galvao, Douglas S. [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Inst Phys Gleb Wataghin, Appl Phys Dept, BR-13083970 Campinas, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: COMPUTATIONAL MATERIALS SCIENCE; v. 187, FEB 1 2021.
Citações Web of Science: 0
Resumo

A reciprocal structure (RS) is a mechanical resistant structure formed by a set of self-supporting elements satisfying certain conditions of structural reciprocity (SR). The first condition is that each element of the structure has to support and be supported by the others. The second condition is that these functions cannot occur in the same part of the element. These two properties make beams and two-dimensional materials very much appropriate to build RSs. Commonly seen in floors or roofs, SR is also present in art, religious symbols, and decorative objects. Da Vinci has drawn several examples of such RSs. Here, thermal stability and mechanical resistance against impacts of simple nano versions of da Vinci's RSs based on graphene nanoribbons, were investigated through fully atomistic molecular dynamics (MD) simulations. We considered structures with three and four joins with and without RS topologies. Our MD results showed that 3-fold RSs are not thermally stable and that the 4-fold RSs can become thermally stable as long as the graphene nanoribbons have their external extremities fixed and either are not lengthy or have a kind of notch at the nanoribbons junctions. For these thermally stable structures, our results show that those with RS topologies are more impact resistant than those without SR, despite the fact that the used graphene nanoribbons are highly pliable. We discuss these results in terms of the number of joins, energy absorption, and stress on the structures. We discuss possible applications in nanoengineering. (AU)

Processo FAPESP: 13/08293-7 - CECC - Centro de Engenharia e Ciências Computacionais
Beneficiário:Munir Salomao Skaf
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 18/02992-4 - Nanoestruturas de Carbono: Simulação e Modelagem
Beneficiário:Alexandre Fontes da Fonseca
Modalidade de apoio: Auxílio à Pesquisa - Regular