Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A Benford's Law based methodology for fraud detection in social welfare programs: Bolsa Familia analysis

Texto completo
Autor(es):
Azevedo, Caio da Silva [1] ; Goncalves, Rodrigo Franco [2] ; Gava, Vagner Luiz [3] ; Spinola, Mauro de Mesquita [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Sao Paulo - Brazil
[2] Univ Paulista, Sao Paulo - Brazil
[3] Inst Pesquisas Tecnol, Sao Paulo - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS; v. 567, APR 1 2021.
Citações Web of Science: 1
Resumo

This paper aims to introduce a data science approach for guiding auditors to accurately select regions suspected of frauds in welfare programs benefits distribution. The technique relies on Newcomb-Benford's Law (NBL) for significant digits. It has been analysed Bolsa Familia data from Federal Government Transparency Portal, a tool that aims to increase fiscal transparency of the Brazilian Government through open budget data. The methodology consists in submit four data samples to null hypothesis statistical methods and thereby evaluate the conformity with the law as well as the summation test which looks for excessively large numbers in the dataset. Research results in this paper are that beneficiaries' cash transfer per se is not a good test variable. Besides, once payment data are grouped by municipalities, they fit NBL, and finally, when submitted to the summation test, the distribution of the Bolsa Familia payments in several municipalities shows some fraud evidence. In this sense, we conclude the NBL can be an appropriate method to fraud investigation of welfare programs' benefits distribution having beneficiaries' payment geographically grouped. (C) 2020 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 19/14011-0 - Aprendizado de máquina para modelagem de escoamento fluvial e predição de inundações
Beneficiário:Caio da Silva Azevedo
Modalidade de apoio: Bolsas no Brasil - Mestrado
Processo FAPESP: 17/50343-2 - Plano de desenvolvimento institucional na área de transformação digital: manufatura avançada e cidades inteligentes e sustentáveis (PDIp)
Beneficiário:Zehbour Panossian
Modalidade de apoio: Auxílio à Pesquisa - Programa Modernização de Institutos Estaduais de Pesquisa