Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Natural extensions of unimodal maps: virtual sphere homeomorphisms and prime ends of basin boundaries

Texto completo
Autor(es):
Boyland, Philip [1] ; de Carvalho, Andre ; Hall, Toby
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Florida, Dept Math, Gainesville, FL 32611 - USA
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: GEOMETRY & TOPOLOGY; v. 25, n. 1, p. 111-228, 2021.
Citações Web of Science: 0
Resumo

Let [f(t): I -> I] be a family of unimodal maps with topological entropies h(f(t)) > 1/2 log 2, and (f) over cap (t) : (I) over cap (t) -> (I) over cap (t) be their natural extensions, where (I) over cap (t) = (sic) (I, f(t)). Subject to some regularity conditions, which are satisfied by tent maps and quadratic maps, we give a complete description of the prime ends of the Barge-Martin embeddings of (I) over cap (t) into the sphere. We also construct a family [chi(t) : S-2 -> S-2] of sphere homeomorphisms with the property that each chi(t) is a factor of (f) over cap (t), by a semiconjugacy for which all fibers except one contain at most three points, and for which the exceptional fiber carries no topological entropy; that is, unimodal natural extensions are virtually sphere homeomorphisms. In the case where [f(t)] is the tent family, we show that chi(t) is a generalized pseudo-Anosov map for the dense set of parameters for which f(t) is postcritically finite, so that [chi(t)] is the completion of the unimodal generalized pseudo-Anosov family introduced by de Carvalho and Hall (Geom. Topol. 8 (2004) 1127-1188). (AU)

Processo FAPESP: 16/04687-9 - Dinâmica e geometria em dimensões 1, 2 e 3
Beneficiário:André Salles de Carvalho
Modalidade de apoio: Bolsas no Exterior - Pesquisa
Processo FAPESP: 11/16265-8 - Dinâmica em baixas dimensões
Beneficiário:Edson Vargas
Modalidade de apoio: Auxílio à Pesquisa - Temático