Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Space-time filter for SSVEP brain-computer interface based on the minimum variance distortionless response

Texto completo
Autor(es):
Carvalho, Sarah Negreiros de [1, 2] ; Vargas, Guilherme Vettorazzi [3] ; da Silva Costa, Thiago Bulhoes [2, 3] ; de Arruda Leite, Harlei Miguel [1, 2] ; Coradine, Luis [4] ; Boccato, Levy [3] ; Soriano, Diogo Coutinho [2, 5] ; Attux, Romis [2, 3]
Número total de Autores: 8
Afiliação do(s) autor(es):
[1] Univ Fed Ouro Preto, Inst Exact & Appl Sci, Ouro Preto - Brazil
[2] BRAINN, Brazilian Inst Neurosci & Neurotechnol, Campinas - Brazil
[3] Univ Estadual Campinas, UNICAMP, Sch Comp & Elect Engn, Campinas - Brazil
[4] Univ Fed Alagoas, Inst Comp, UFAL, Maceio, Alagoas - Brazil
[5] Fed Univ ABC, Engn Modeling & Appl Social Sci Ctr, Santo Andre, SP - Brazil
Número total de Afiliações: 5
Tipo de documento: Artigo Científico
Fonte: MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING; v. 59, n. 5, p. 1133-1150, MAY 2021.
Citações Web of Science: 0
Resumo

Brain-computer interfaces (BCI) based on steady-state visually evoked potentials (SSVEP) have been increasingly used in different applications, ranging from entertainment to rehabilitation. Filtering techniques are crucial to detect the SSVEP response since they can increase the accuracy of the system. Here, we present an analysis of a space-time filter based on the Minimum Variance Distortionless Response (MVDR). We have compared the performance of a BCI-SSVEP using the MVDR filter to other classical approaches: Common Average Reference (CAR) and Canonical Correlation Analysis (CCA). Moreover, we combined the CAR and MVDR techniques, totalling four filtering scenarios. Feature extraction was performed using Welch periodogram, Fast Fourier transform, and CCA (as extractor) with one and two harmonics. Feature selection was performed by forward wrappers, and a linear classifier was employed for discrimination. The main analyses were carried out over a database of ten volunteers, considering two cases: four and six visual stimuli. The results show that the BCI-SSVEP using the MVDR filter achieves the best performance among the analysed scenarios. Interestingly, the system's accuracy using the MVDR filter is practically constant even when the number of visual stimuli was increased, whereas degradation was observed for the other techniques. (AU)

Processo FAPESP: 19/09512-0 - Análise não linear da conectividade funcional dinâmica via quantificação de recorrência e sua aplicação em interfaces cérebro-computador
Beneficiário:Diogo Coutinho Soriano
Modalidade de apoio: Bolsas no Exterior - Pesquisa
Processo FAPESP: 13/07559-3 - Instituto Brasileiro de Neurociência e Neurotecnologia - BRAINN
Beneficiário:Fernando Cendes
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs