Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

sing normative modelling to detect disease progression in mild cognitive impairment and Alzheimer's disease in a cross-sectional multi-cohort stud

Texto completo
Autor(es):
Mostrar menos -
Pinaya, Walter H. L. [1, 2, 3] ; Scarpazza, Cristina [2, 4] ; Garcia-Dias, Rafael [2] ; Vieira, Sandra [2] ; Baecker, Lea [2] ; da Costa, Pedro F. [5, 6] ; Redolfi, Alberto [7] ; Frisoni, Giovanni B. [8, 9, 10, 11] ; Pievani, Michela [10] ; Calhoun, Vince D. [12] ; Sato, Joao R. [1] ; Mechelli, Andrea [2]
Número total de Autores: 12
Afiliação do(s) autor(es):
Mostrar menos -
[1] Univ Fed ABC, Ctr Math Comp & Cognit, Santo Andre, SP - Brazil
[2] Kings Coll London, Inst Psychiat Psychol & Neurosci, Dept Psychosis Studies, London - England
[3] Kings Coll London, Sch Biomed Engn & Imaging Sci, Dept Biomed Engn, London - England
[4] Univ Padua, Dept Gen Psychol, Padua - Italy
[5] Kings Coll London, Inst Psychiat Psychol & Neurosci, Dept Neuroimaging, London - England
[6] Univ London, Birkbeck Coll, Ctr Brain & Cognit Dev, London - England
[7] IRCCS Ist Ctr San Giovanni Dio Fatebenefratelli, Lab Neuroinformat, Brescia - Italy
[8] Univ Geneva, Geneva - Switzerland
[9] Univ Hosp, Memory Clin, Geneva - Switzerland
[10] IRCCS Ist Ctr San Giovanni Dio Fatebenefratelli, Lab Alzheimers Neuroimaging & Epidemiol, Brescia - Italy
[11] Univ Hosp, LANVIE Lab Neuroimaging Aging, Geneva - Switzerland
[12] Georgia Tech, Triinst Ctr Translat Res Neuroimaging & Data Sci, Emory, GA - USA
Número total de Afiliações: 12
Tipo de documento: Artigo Científico
Fonte: SCIENTIFIC REPORTS; v. 11, n. 1 AUG 3 2021.
Citações Web of Science: 1
Resumo

Normative modelling is an emerging method for quantifying how individuals deviate from the healthy populational pattern. Several machine learning models have been implemented to develop normative models to investigate brain disorders, including regression, support vector machines and Gaussian process models. With the advance of deep learning technology, the use of deep neural networks has also been proposed. In this study, we assessed normative models based on deep autoencoders using structural neuroimaging data from patients with Alzheimer's disease (n=206) and mild cognitive impairment (n=354). We first trained the autoencoder on an independent dataset (UK Biobank dataset) with 11,034 healthy controls. Then, we estimated how each patient deviated from this norm and established which brain regions were associated to this deviation. Finally, we compared the performance of our normative model against traditional classifiers. As expected, we found that patients exhibited deviations according to the severity of their clinical condition. The model identified medial temporal regions, including the hippocampus, and the ventricular system as critical regions for the calculation of the deviation score. Overall, the normative model had comparable cross-cohort generalizability to traditional classifiers. To promote open science, we are making all scripts and the trained models available to the wider research community. (AU)

Processo FAPESP: 18/21934-5 - Estatística de redes: teoria, métodos e aplicações
Beneficiário:André Fujita
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 18/04654-9 - Séries temporais, ondaletas e dados de alta dimensão
Beneficiário:Pedro Alberto Morettin
Modalidade de apoio: Auxílio à Pesquisa - Temático