Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Country transition index based on hierarchical clustering to predict next COVID-19 waves

Texto completo
Autor(es):
Rios, Ricardo A. [1] ; Nogueira, Tatiane [1] ; Coimbra, Danilo B. [1] ; Lopes, Tiago J. S. [2] ; Abraham, Ajith [3] ; de Mello, Rodrigo F. [4, 5]
Número total de Autores: 6
Afiliação do(s) autor(es):
[1] Univ Fed Bahia, Inst Comp, Salvador, BA - Brazil
[2] Res Inst, Natl Ctr Child Hlth & Dev, Dept Reprod Biol, Tokyo - Japan
[3] Machine Intelligence Res Labs, Auburn, WA - USA
[4] Univ Sao Paulo, Inst Math & Comp Sci, Sao Carlos - Brazil
[5] Itau Unibanco, Av Eng Armando de Arruda Pereira, Sao Paulo - Brazil
Número total de Afiliações: 5
Tipo de documento: Artigo Científico
Fonte: SCIENTIFIC REPORTS; v. 11, n. 1 JUL 27 2021.
Citações Web of Science: 1
Resumo

COVID-19 has widely spread around the world, impacting the health systems of several countries in addition to the collateral damage that societies will face in the next years. Although the comparison between countries is essential for controlling this disease, the main challenge is the fact of countries are not simultaneously affected by the virus. Therefore, from the COVID-19 dataset by the Johns Hopkins University Center for Systems Science and Engineering, we present a temporal analysis on the number of new cases and deaths among countries using artificial intelligence. Our approach incrementally models the cases using a hierarchical clustering that emphasizes country transitions between infection groups over time. Then, one can compare the current situation of a country against others that have already faced previous waves. By using our approach, we designed a transition index to estimate the most probable countries' movements between infectious groups to predict next wave trends. We draw two important conclusions: (1) we show the historical infection path taken by specific countries and emphasize changing points that occur when countries move between clusters with small, medium, or large number of cases; (2) we estimate new waves for specific countries using the transition index. (AU)

Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs