Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

CeTF: an R/Bioconductor package for transcription factor co-expression networks using regulatory impact factors (RIF) and partial correlation and information (PCIT) analysis

Texto completo
Autor(es):
Oliveira de Biagi Jr, Carlos Alberto ; Nociti, Ricardo Perecin [1, 2] ; Brotto, Danielle Barbosa [3, 1] ; Funicheli, Breno Osvaldo [1] ; Ruy, Patricia de Cassia [4, 1] ; Bianchi Ximenez, Joao Paulo [1] ; Alves Figueiredo, David Livingstone [5, 6] ; Silva Jr, Wilson Araujo
Número total de Autores: 8
Afiliação do(s) autor(es):
[1] Oliveira de Biagi Jr, Jr., Carlos Alberto, Ctr Cell Based Therapy CEPID FAPESP, Reg Blood Ctr Ribeirao Preto, Natl Inst Sci & Technol Stem Cell & Cell Therapy, Ribeirao Preto - Brazil
[2] Univ Sao Paulo, Fac Anim Sci & Food Engn, Dept Vet Med, Lab Mol Morphophysiol & Dev, Pirassununga - Brazil
[3] Oliveira de Biagi Jr, Jr., Carlos Alberto, Univ Sao Paulo, Dept Genet, Ribeirao Preto Med Sch, Ribeirao Preto - Brazil
[4] HCFMRP USP, Ctr Med Genom, Ribeirao Preto - Brazil
[5] Oliveira de Biagi Jr, Jr., Carlos Alberto, IPEC, Inst Canc Res, Guarapuava - Brazil
[6] Midwest State Univ Parana UNICTR, Dept Med, Guarapuava - Brazil
Número total de Afiliações: 6
Tipo de documento: Artigo Científico
Fonte: BMC Genomics; v. 22, n. 1 AUG 20 2021.
Citações Web of Science: 0
Resumo

Background: Finding meaningful gene-gene interaction and the main Transcription Factors (TFs) in co-expression networks is one of the most important challenges in gene expression data mining. Results: Here, we developed the R package ``CeTF{''} that integrates the Partial Correlation with Information Theory (PCIT) and Regulatory Impact Factors (RIF) algorithms applied to gene expression data from microarray, RNA-seq, or single-cell RNA-seq platforms. This approach allows identifying the transcription factors most likely to regulate a given network in different biological systems - for example, regulation of gene pathways in tumor stromal cells and tumor cells of the same tumor. This pipeline can be easily integrated into the high-throughput analysis. To demonstrate the CeTF package application, we analyzed gastric cancer RNA-seq data obtained from TCGA (The Cancer Genome Atlas) and found the HOXB3 gene as the second most relevant TFs with a high regulatory impact (TFs-HRi) regulating gene pathways in the cell cycle. Conclusion: This preliminary finding shows the potential of CeTF to list master regulators of gene networks. CeTF was designed as a user-friendly tool that provides many highly automated functions without requiring the user to perform many complicated processes. (AU)

Processo FAPESP: 13/08135-2 - CTC - Centro de Terapia Celular
Beneficiário:Dimas Tadeu Covas
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs