MULTILAYER POTENTIALS FOR HIGHER-ORDER SYSTEMS IN ... - BV FAPESP
Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

MULTILAYER POTENTIALS FOR HIGHER-ORDER SYSTEMS IN ROUGH DOMAINS

Texto completo
Autor(es):
Hoepfner, Gustavo [1] ; Liboni, Paulo [2] ; Mitrea, Dorina [3] ; Mitrea, Irina [4] ; Mitrea, Marius [3]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Univ Fed Sao Carlos, Dept Matemat, Sao Carlos - Brazil
[2] Univ Estadual Londrina, Dept Matemat, Londrina, Parana - Brazil
[3] Baylor Univ, Dept Math, Waco, TX 76798 - USA
[4] Temple Univ, Dept Math, Philadelphia, PA 19122 - USA
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: ANALYSIS & PDE; v. 14, n. 4, p. 1233-1308, 2021.
Citações Web of Science: 0
Resumo

We initiate the study of multilayer potential operators associated with any given homogeneous constant-coefficient higher-order elliptic system L in an open set Omega subset of R-n satisfying additional assumptions of a geometric measure theoretic nature. We develop a Calderon-Zygmund-type theory for this brand of singular integral operators acting on Whitney arrays, starting with the case when Omega is merely of locally finite perimeter and then progressively strengthening the hypotheses by ultimately assuming that Omega is a uniformly rectifiable domain (which is the optimal setting where singular integral operators of principal value type are known to be bounded on Lebesgue spaces), and conclude by indicating how this body of results is significant in the context of boundary value problems for the higher-order system L in such a domain Omega. (AU)

Processo FAPESP: 19/04995-3 - Propriedades qualitativas das equações diferenciais parciais e várias variáveis complexas
Beneficiário:Gustavo Hoepfner
Modalidade de apoio: Auxílio à Pesquisa - Regular