Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Spatial Statistical Models: An Overview under the Bayesian Approach

Texto completo
Autor(es):
Louzada, Francisco [1] ; Nascimento, Diego Carvalho do [2] ; Egbon, Osafu Augustine [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Math Sci & Comp, BR-13566590 Sao Carlos - Brazil
[2] Univ Atacama, Fac Ingn, Dept Matemat, Copiapo 1530000 - Chile
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: AXIOMS; v. 10, n. 4 DEC 2021.
Citações Web of Science: 0
Resumo

Spatial documentation is exponentially increasing given the availability of Big Data in the Internet of Things, enabled by device miniaturization and data storage capacity. Bayesian spatial statistics is a useful statistical tool to determine the dependence structure and hidden patterns in space through prior knowledge and data likelihood. However, this class of modeling is not yet well explored when compared to adopting classification and regression in machine-learning models, in which the assumption of the spatiotemporal independence of the data is often made, that is an inexistent or very weak dependence. Thus, this systematic review aims to address the main models presented in the literature over the past 20 years, identifying the gaps and research opportunities. Elements such as random fields, spatial domains, prior specification, the covariance function, and numerical approximations are discussed. This work explores the two subclasses of spatial smoothing: global and local. (AU)

Processo FAPESP: 20/09174-5 - Recomendação de itens de interesse da BeeNet
Beneficiário:Diego Carvalho do Nascimento
Modalidade de apoio: Bolsas no Brasil - Programa Capacitação - Treinamento Técnico