Busca avançada
Ano de início
Entree


Free iron oxide content in tropical soils predicted by integrative digital mapping

Texto completo
Autor(es):
Mendes, Wanderson De Sousa ; Dematte, Jose A. M. ; Minasny, Budiman ; Silvero, Nelida E. Q. ; Bonfatti, Benito R. ; Safanelli, Jose Lucas ; Rizzo, Rodnei ; Da Costa, Antonio Carlos Saraiva
Número total de Autores: 8
Tipo de documento: Artigo Científico
Fonte: SOIL & TILLAGE RESEARCH; v. 219, p. 12-pg., 2022-05-01.
Resumo

The free iron content is a vital indicator of pedogenic processes in tropical soils and can be used to understand the soil's weathering history and aid in classification. Despite its importance in agriculture and pedology, laboratory analyses of soil iron content are not widely used because they are costly and time-consuming. Remote sensing data combined with digital soil mapping are effective tools to regionalise soil iron content. They can reduce the number of soil samples needed to characterise soil variability and, consequently, laboratory analysis costs. This study aimed to create a strategy for mapping free iron content using a 35-year time series of Landsat images combined with topographic parameters at two spatial resolutions (5 and 30 m) in a region with high variability in soils and geology in the state of Sa & SIM;o Paulo, Brazil. The dataset comprised 344 observations of free iron content at 0-20 cm depth over a 2574 km(2) area. The dataset was split into calibration and a validation set (85:15%), and the environmental variables were chosen based on the scorpan factors. Spatial prediction functions for free iron were developed using several machine learning algorithms linking soil observations with the environmental variables. We found that the temporal bare soil image improved model performance. Although 5 and 30 m resolution terrain data differed slightly, the best-fit model was obtained at 5 m resolution (root mean square error, 25.09 g kg(-1); adjusted R-2, 0.84). Among the evaluated machine learning algorithms, Random Forest was the most accurate method for predicting free iron distribution in the study area. The free iron content map can identify soil types in more detail and should be prioritised in future pedological studies. (AU)

Processo FAPESP: 14/22262-0 - Geotecnologias no mapeamento digital pedológico detalhado e biblioteca espectral de solos do Brasil: desenvolvimento e aplicações
Beneficiário:José Alexandre Melo Demattê
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 16/26124-6 - Pedologia de precisão: caracterização e mapeamento de solos em tempo real por geotecnologias
Beneficiário:Wanderson de Sousa Mendes
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto
Processo FAPESP: 16/01597-9 - Pedotransferência por geotecnologias associada à fotopedologia com vistas ao mapeamento pedológico de áreas agrícolas do estado de São Paulo
Beneficiário:José Lucas Safanelli
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto