Busca avançada
Ano de início
Entree


Large-Scale Autonomous Flight With Real-Time Semantic SLAM Under Dense Forest Canopy

Texto completo
Autor(es):
Mostrar menos -
Liu, Xu ; Nardari, Guilherme, V ; Ojeda, Fernando Cladera ; Tao, Yuezhan ; Zhou, Alex ; Donnelly, Thomas ; Qu, Chao ; Chen, Steven W. ; Romero, Roseli A. F. ; Taylor, Camillo J. ; Kumar, Vijay
Número total de Autores: 11
Tipo de documento: Artigo Científico
Fonte: IEEE ROBOTICS AND AUTOMATION LETTERS; v. 7, n. 2, p. 8-pg., 2022-04-01.
Resumo

Semantic maps represent the environment using a set of semantically meaningful objects. This representation is storage-efficient, less ambiguous, and more informative, thus facilitating large-scale autonomy and the acquisition of actionable information in highly unstructured, GPS-denied environments. In this letter, we propose an integrated system that can perform large-scale autonomous flights and real-time semantic mapping in challenging under-canopy environments. We detect and model tree trunks and ground planes from LiDAR data, which are associated across scans and used to constrain robot poses as well as tree trunk models. The autonomous navigation module utilizes a multi-level planning and mapping framework and computes dynamically feasible trajectories that lead the UAV to build a semantic map of the user-defined region of interest in a computationally and storage efficient manner. A drift-compensation mechanism is designed to minimize the odometry drift using semantic SLAM outputs in real time, while maintaining planner optimality and controller stability. This leads the UAV to execute its mission accurately and safely at scale. (AU)

Processo FAPESP: 17/17444-0 - Monitoramento de plantações usando robôs heterogêneos
Beneficiário:Guilherme Vicentim Nardari
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto
Processo FAPESP: 14/50851-0 - INCT 2014: Instituto Nacional de Ciência e Tecnologia para Sistemas Autônomos Cooperativos Aplicados em Segurança e Meio Ambiente
Beneficiário:Marco Henrique Terra
Modalidade de apoio: Auxílio à Pesquisa - Temático