Interação dos deficientes visuais com o tratamento matemático e gráfico de funções...
Desenvolvimento de ferramentas analíticas em colaboração com as equipes PDS e RepM...
Texto completo | |
Autor(es): |
Alonso, L.
;
Mendez-Bermudez, J. A.
;
Estrada, Ernesto
Número total de Autores: 3
|
Tipo de documento: | Artigo Científico |
Fonte: | PHYSICAL REVIEW E; v. 100, n. 6, p. 8-pg., 2019-12-19. |
Resumo | |
We perform an extensive numerical analysis of beta-skeleton graphs, a particular type of proximity graphs. In beta-skeleton graph (BSG) two vertices are connected if a proximity rule, that depends of the parameter beta is an element of (0, infinity), is satisfied. Moreover, for beta > 1 there exist two different proximity rules, leading to lune-based and circle-based BSGs. First, by computing the average degree of large ensembles of BSGs we detect differences, which increase with the increase of beta, between lune-based and circle-based BSGs. Then, within a random matrix theory (RMT) approach, we explore spectral and eigenvector properties of random BSGs by the use of the nearest-neighbor energy-level spacing distribution and the entropic eigenvector localization length, respectively. The RMT analysis allows us to conclude that a localization transition occurs at beta = 1. (AU) | |
Processo FAPESP: | 19/06931-2 - Métodos de matrizes aleatórias em redes complexas |
Beneficiário: | Francisco Aparecido Rodrigues |
Modalidade de apoio: | Auxílio à Pesquisa - Pesquisador Visitante - Internacional |