Busca avançada
Ano de início
Entree


Wilson loops and defect RG flows in ABJM

Texto completo
Autor(es):
Castiglioni, Luigi ; Penati, Silvia ; Tenser, Marcia ; Trancanelli, Diego
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: Journal of High Energy Physics; v. N/A, n. 6, p. 40-pg., 2023-06-23.
Resumo

We continue our study of renormalization group (RG) flows on Wilson loop defects in ABJM theory, which we have initiated in arXiv:2211.16501. We generalize that analysis by including non-supersymmetric fixed points and RG trajectories. To this end, we first determine the "ordinary", non-sup ersymmetric Wilson loops, which turn out to be two and to include an R-symmetry preserving coupling to the scalar fields of the theory, contrary to their four-dimensional counterpart defined solely in terms of the gauge field holonomy. We then deform these operators by turning on bosonic and/or fermionic couplings, which trigger an elaborate, multi-dimensional network of possible RG trajectories connecting a large spectrum of fixed points classified in terms of the amount (possibly zero) of supersymmetry and R-symmetry preserved. The fl-functions are computed to leading order in the ABJM coupling but exactly in the deformation parameters, using an auxiliary one-dimensional theory on the defect and a dimensional regularization scheme. A striking result is the different behavior of the two ordinary Wilson loops, of which one turns out to be a UV unstable point while the other is IR stable. The same is true for the two 1/2 BPS Wilson loops. We interpret our results from a defect CFT (dCFT) point of view, computing the anomalous dimensions of the operators associated to the deformations and establishing appropriate g-theorems. In particular, the fermionic unstable fixed point is associated to a dCFT which is not reflection positive. (AU)

Processo FAPESP: 19/21281-4 - Dualidade gravitação / Teoria de gauge
Beneficiário:Horatiu Stefan Nastase
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 16/01343-7 - ICTP Instituto Sul-Americano para Física Fundamental: um centro regional para física teórica
Beneficiário:Nathan Jacob Berkovits
Modalidade de apoio: Auxílio à Pesquisa - Projetos Especiais