Aspectos combinatórios das Álgebras de Lie e álgebras não-comutativas
Subálgebras de Mischenko-Fomenko de álgebras envolventes de álgebras de Lie simples
José María Pérez Izquierdo | Universidad de La Rioja - Espanha
Texto completo | |
Autor(es): |
Yasumura, Felipe Yukihide
Número total de Autores: 1
|
Tipo de documento: | Artigo Científico |
Fonte: | Linear Algebra and its Applications; v. 674, p. 22-pg., 2023-06-12. |
Resumo | |
In this paper we construct a graded universal enveloping algebra of a G-graded Lie algebra, where G is not necessarily an abelian group. If the grading group is abelian, then it coincides with the classical construction. We prove the existence and uniqueness of the graded enveloping algebra. As consequences, we prove a graded variant of Witt's Theorem on the universal enveloping algebra of the free Lie algebra, and the graded version of Ado's Theorem, which states that every finite-dimensional Lie algebra admits a faithful finite dimensional representation. Furthermore we investigate if a Lie grading is equivalent to an abelian grading.& COPY; 2023 Elsevier Inc. All rights reserved. (AU) | |
Processo FAPESP: | 18/23690-6 - Estruturas, representações e aplicações de sistemas algébricos |
Beneficiário: | Ivan Chestakov |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |