Busca avançada
Ano de início
Entree


Gorenstein matrices

Autor(es):
Dokuchaev, M. A. ; Kirichenko, V. V. ; Zelensky, A. V. ; Zhuravlev, V. N.
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: ALGEBRA & DISCRETE MATHEMATICS; v. N/A, n. 1, p. 22-pg., 2005-01-01.
Resumo

Let A=(a(ij)) be an integral matrix. We say that A is (0,1,2)-matrix if a(ij) is an element of{0,1,2}. There exists the Gorenstein (0,1,2)-matrix for any permutation sigma on the set {1,,n} without fixed elements. For every positive integer n there exists the Gorenstein cyclic (0,1,2)-matrix A(n) such that inx A(n)=2. If a Latin square L-n with a first row and first column (0,1,,n-1) is an exponent matrix, then n=2(m) and L-n is the Cayley table of a direct product of m copies of the cyclic group of order 2. Conversely, the Cayley table epsilon(m) of the elementary abelian group G(m)=(2)XX(2) of order 2(m) is a Latin square and a Gorenstein symmetric matrix with first row (0,1,,2(m)-1) and sigma(epsilon(m))=(123...2m-1 2m 2(m) 2(m)-1 2(m)-2...2 1). (AU)

Processo FAPESP: 02/05087-2 - Vladimir Kirichenko | University Kiev - Ucrânia
Beneficiário:Mikhailo Dokuchaev
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Internacional