Busca avançada
Ano de início
Entree


On Tuza's Conjecture for Triangulations and Graphs with Small Treewidth

Texto completo
Autor(es):
Botler, F. ; Fernandes, C. G. ; Gutierrez, J.
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE; v. 346, p. 13-pg., 2019-08-30.
Resumo

Tuza (1981) conjectured that the cardinality tau(G) of a minimum set of edges that intersects every triangle of a graph G is at most twice the cardinality nu(G) of a maximum set of edge-disjoint triangles of G. In this paper we present three results regarding Tuza's Conjecture. We verify it for graphs with treewidth at most 6; and we show that tau(G) <= 3/2 nu(G) for every planar triangulation G different from K-4; and that tau(G) <= 9/5 nu(G) + 1/5 if G is a maximal graph with treewidth 3. (AU)

Processo FAPESP: 15/08538-5 - Transversais em grafos
Beneficiário:Juan Gabriel Gutierrez Alva
Modalidade de apoio: Bolsas no Brasil - Doutorado