Busca avançada
Ano de início
Entree


Homological aspects of derivation modules and critical case of the Herzog-Vasconcelos conjecture

Texto completo
Autor(es):
Jorge-Perez, Victor H. ; Miranda-Neto, Cleto B.
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: COLLECTANEA MATHEMATICA; v. 73, n. 2, p. 17-pg., 2021-02-03.
Resumo

Let R be a Noetherian local k-algebra whose derivation module Der(k) (R) is finitely generated. Our main goal in this paper is to investigate the impact of assuming that Der(k) (R) has finite projective dimension (or finite Gorenstein dimension), mainly in connection with freeness, under a suitable hypothesis concerning the vanishing of (co)homology or the depth of a certain tensor product. We then apply some of our results towards the critical case depth R = 3 of the Herzog-Vasconcelos conjecture and consequently to the strong version of the Zariski-Lipman conjecture. (AU)

Processo FAPESP: 19/21843-2 - Cohomologia local, problemas homológicos, e álgebras de blowup
Beneficiário:Victor Hugo Jorge Pérez
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Brasil