Busca avançada
Ano de início
Entree


Fractional Kirchhoff Hardy problems with singular and critical Sobolev nonlinearities

Texto completo
Autor(es):
Fiscella, Alessio ; Mishra, Pawan Kumar
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: MANUSCRIPTA MATHEMATICA; v. 168, n. 1-2, p. 45-pg., 2021-05-12.
Resumo

The paper deals with the following singular fractional problem {M(integral integral(R2N) vertical bar u(x) - u(y)vertical bar(2)/vertical bar x - y vertical bar(N+2s) dxdy) (-Delta)(s)u - mu u/vertical bar x vertical bar(2s) = lambda f(x)u(-gamma) + g(x)u(2s)*(-1) in Omega, u > 0 in Omega, u = 0 in R-n\Omega, where Omega subset of R-N is an open bounded domain, with 0 is an element of Omega, dimension N > 2s with s is an element of (0, 1), 2(s)* = 2N/(N - 2s) is the fractional critical Sobolev exponent, lambda and mu are positive parameters, exponent gamma is an element of (0, 1), M models a Kirchhoff coefficient, f is a positive weight while g is a sign-changing function. The main feature and novelty of our problem is the combination of the critical Hardy and Sobolev nonlinearities with the bi-nonlocal framework and a singular nondifferentiable term. By exploiting the Nehari manifold approach, we provide the existence of at least two positive solutions. (AU)

Processo FAPESP: 19/02512-5 - Sistemas e equações diferenciais parciais
Beneficiário:Marcelo da Silva Montenegro
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 19/23917-3 - Operadores com crescimento não standard
Beneficiário:Alessio Fiscella
Modalidade de apoio: Auxílio à Pesquisa - Regular