Problemas elípticos com não linearidades exponenciais críticas
Dinâmica de problemas semilineares autônomos e não-autônomos
Texto completo | |
Autor(es): |
Fiscella, Alessio
;
Mishra, Pawan Kumar
Número total de Autores: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | MANUSCRIPTA MATHEMATICA; v. 168, n. 1-2, p. 45-pg., 2021-05-12. |
Resumo | |
The paper deals with the following singular fractional problem {M(integral integral(R2N) vertical bar u(x) - u(y)vertical bar(2)/vertical bar x - y vertical bar(N+2s) dxdy) (-Delta)(s)u - mu u/vertical bar x vertical bar(2s) = lambda f(x)u(-gamma) + g(x)u(2s)*(-1) in Omega, u > 0 in Omega, u = 0 in R-n\Omega, where Omega subset of R-N is an open bounded domain, with 0 is an element of Omega, dimension N > 2s with s is an element of (0, 1), 2(s)* = 2N/(N - 2s) is the fractional critical Sobolev exponent, lambda and mu are positive parameters, exponent gamma is an element of (0, 1), M models a Kirchhoff coefficient, f is a positive weight while g is a sign-changing function. The main feature and novelty of our problem is the combination of the critical Hardy and Sobolev nonlinearities with the bi-nonlocal framework and a singular nondifferentiable term. By exploiting the Nehari manifold approach, we provide the existence of at least two positive solutions. (AU) | |
Processo FAPESP: | 19/02512-5 - Sistemas e equações diferenciais parciais |
Beneficiário: | Marcelo da Silva Montenegro |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |
Processo FAPESP: | 19/23917-3 - Operadores com crescimento não standard |
Beneficiário: | Alessio Fiscella |
Modalidade de apoio: | Auxílio à Pesquisa - Regular |