Busca avançada
Ano de início
Entree


A Robust Dual-Mode Machine Learning Framework for Classifying Deforestation Patterns in Amazon Native Lands

Texto completo
Autor(es):
Rodrigues, Julia ; Dias, Mauricio Araujo ; Negri, Rogerio ; Hussain, Sardar Muhammad ; Casaca, Wallace
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: LAND; v. 13, n. 9, p. 19-pg., 2024-09-01.
Resumo

The integrated use of remote sensing and machine learning stands out as a powerful and well-established approach for dealing with various environmental monitoring tasks, including deforestation detection. In this paper, we present a tunable, data-driven methodology for assessing deforestation in the Amazon biome, with a particular focus on protected conservation reserves. In contrast to most existing works from the specialized literature that typically target vast forest regions or privately used lands, our investigation concentrates on evaluating deforestation in particular, legally protected areas, including indigenous lands. By integrating the open data and resources available through the Google Earth Engine, our framework is designed to be adaptable, employing either anomaly detection methods or artificial neural networks for classifying deforestation patterns. A comprehensive analysis of the classifiers' accuracy, generalization capabilities, and practical usage is provided, with a numerical assessment based on a case study in the Amazon rainforest regions of S & atilde;o F & eacute;lix do Xingu and the Kayap & oacute; indigenous reserve. (AU)

Processo FAPESP: 22/13665-0 - Detecção de Desmatamento via Aprendizado Computacional Não-Supervisionado: Modelagem e Aplicações em Parques de Preservação do Bioma Amazônico
Beneficiário:Júlia Rodrigues Marques do Nascimento
Modalidade de apoio: Bolsas no Brasil - Iniciação Científica
Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 23/14427-8 - Ciência de Dados para a Indústria Inteligente (CDII)
Beneficiário:José Alberto Cuminato
Modalidade de apoio: Auxílio à Pesquisa - Programa Centros de Pesquisa em Engenharia