Busca avançada
Ano de início
Entree


Unsupervised Bayesian classification for models with scalar and functional covariates

Texto completo
Autor(es):
Garcia, Nancy L. ; Rodrigues-Motta, Mariana ; Migon, Helio S. ; Petkova, Eva ; Tarpey, Thaddeus ; Ogden, R. Todd ; Giordano, Julio O. ; Perez, Martin M.
Número total de Autores: 8
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS; v. 73, n. 3, p. 24-pg., 2024-02-07.
Resumo

We consider unsupervised classification by means of a latent multinomial variable which categorizes a scalar response into one of the L components of a mixture model which incorporates scalar and functional covariates. This process can be thought as a hierarchical model with the first level modelling a scalar response according to a mixture of parametric distributions and the second level modelling the mixture probabilities by means of a generalized linear model with functional and scalar covariates. The traditional approach of treating functional covariates as vectors not only suffers from the curse of dimensionality, since functional covariates can be measured at very small intervals leading to a highly parametrized model, but also does not take into account the nature of the data. We use basis expansions to reduce the dimensionality and a Bayesian approach for estimating the parameters while providing predictions of the latent classification vector. The method is motivated by two data examples that are not easily handled by existing methods. The first example concerns identifying placebo responders on a clinical trial (normal mixture model) and the other predicting illness for milking cows (zero-inflated mixture of the Poisson model). (AU)

Processo FAPESP: 23/00592-7 - Modelos de regressão mistos e de mistura para problemas complexos
Beneficiário:Mariana Rodrigues Motta
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 17/15306-9 - Incorporando Covariaveis Functionais em Modelos de Regressão Não Paramétricos
Beneficiário:Nancy Lopes Garcia
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 19/10800-0 - Extensões de Modelos Hierárquicos: Regressão Penalizada, Prioris de Referência e Dados Funcionais
Beneficiário:Ronaldo Dias
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Brasil
Processo FAPESP: 18/06811-4 - XXIX International Biometric Conference
Beneficiário:Mariana Rodrigues Motta
Modalidade de apoio: Auxílio à Pesquisa - Reunião - Exterior