Busca avançada
Ano de início
Entree


Deblur Capsule Networks

Texto completo
Autor(es):
Santos, Daniel Felipe S. ; Pires, Rafael G. ; Papa, Joao P.
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2023, PT I; v. 14469, p. 15-pg., 2024-01-01.
Resumo

Blur is often caused by physical limitations of the image acquisition sensor or by unsuitable environmental conditions. Blind image deblurring recovers the underlying sharp image from its blurry counterpart without further knowledge regarding the blur kernel or the sharp image itself. Traditional deconvolution filters are highly dependent on specific kernels or prior knowledge to guide the deblurring process. This work proposes an end-to-end deep learning approach to address blind image deconvolution in three stages: (i) it first predicts the blur type, (ii) then it deconvolves the blurry image by the identified and reconstructed blur kernel, and (iii) it deep regularizes the output image. Our proposed approach, called Deblur Capsule Networks, explores the capsule structure in the context of image deblurring. Such a versatile structure showed promising results for synthetic uniform camera motion and multi-domain blind deblur of general-purpose and remote sensing image datasets compared to some state-of-the-art techniques. (AU)

Processo FAPESP: 19/07665-4 - Centro de Inteligência Artificial
Beneficiário:Fabio Gagliardi Cozman
Modalidade de apoio: Auxílio à Pesquisa - Programa eScience e Data Science - Centros de Pesquisa em Engenharia
Processo FAPESP: 17/25908-6 - Aprendizado fracamente supervisionado para análise de vídeos no domínio comprimido em tarefas de recuperação e classificação para alertas visuais
Beneficiário:João Paulo Papa
Modalidade de apoio: Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE
Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 14/12236-1 - AnImaLS: Anotação de Imagem em Larga Escala: o que máquinas e especialistas podem aprender interagindo?
Beneficiário:Alexandre Xavier Falcão
Modalidade de apoio: Auxílio à Pesquisa - Temático