Busca avançada
Ano de início
Entree


Asymptotic Behavior Related to Cheeger Constant for Solutions of an Exponentially Growth Equation

Texto completo
Autor(es):
de Araujo, Anderson L. A. ; Ercole, Grey ; Montenegro, Marcelo
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: Results in Mathematics; v. 79, n. 1, p. 12-pg., 2024-02-01.
Resumo

We show the existence of a positive solution up\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{p}$$\end{document} for a Dirichlet p-Laplacian problem with nonlinearity involving an exponential term that can be supercritical. We determine the asymptotic behavior of up\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{p}$$\end{document} as p -> 1+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\rightarrow 1<^>{+}$$\end{document} and p ->+infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\rightarrow +\infty $$\end{document}, which are related to the Cheeger constant and the distance function to the boundary, respectively. Furthermore, we also prove a nonexistence result concerning the range of the parameter lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}. (AU)