Busca avançada
Ano de início
Entree


Fourier-Mukai Transforms and Stable Sheaves on Weierstrass Elliptic Surfaces

Texto completo
Autor(es):
Liu, Wanmin ; Lo, Jason ; Martinez, Cristian
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY; v. 55, n. 4, p. 38-pg., 2024-12-01.
Resumo

On a Weierstra ss elliptic surface X, we define a "limit" of Bridgeland stability conditions, denoted as Zl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z<^>l$$\end{document}-stability, by moving the polarisation towards the fiber direction in the ample cone while keeping the volume of the polarisation fixed. We describe conditions under which a slope stable torsion-free sheaf is taken by a Fourier-Mukai transform to a Zl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z<^>l$$\end{document}-stable object, and describe a modification upon which a Zl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z<^>l$$\end{document}-semistable object is taken by the inverse Fourier-Mukai transform to a slope semistable torsion-free sheaf. We also study wall-crossing for Bridgeland stability, and show that 1-dimensional twisted Gieseker semistable sheaves are taken by a Fourier-Mukai transform to Bridgeland semistable objects. (AU)

Processo FAPESP: 18/21391-1 - Teoria de calibre e geometria algébrica
Beneficiário:Marcos Benevenuto Jardim
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 20/06938-4 - Geometria de espaços de módulos de feixes através do cruzamento de paredes
Beneficiário:Cristian Mauricio Martinez Esparza
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado