Busca avançada
Ano de início
Entree


Asymptotics for positive singular solutions to subcritical sixth order equations

Texto completo
Autor(es):
Andrade, Joao Henrique ; Wei, Juncheng
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS; v. 255, p. 28-pg., 2025-06-01.
Resumo

We classify the local asymptotic behavior of positive singular solutions to a class of subcritical sixth order equations on the punctured ball. First, using a version of the integral moving spheres technique, we prove that solutions are asymptotically radially symmetric solutions with respect to the origin. We divide our approach into some cases concerning the growth of nonlinearity. In general, we use an Emden-Fowler change of variables to translate our problem to a cylinder. In the lower critical regime, this is not enough, thus, we need to introduce a new notion of change of variables. The main difficulty is that the cylindrical PDE in this coordinate system is nonautonomous. Nonetheless, we define an associated nonautonomous Pohozaev functional, which can be proved to be asymptotically monotone. In addition, we show a priori estimates for these two functionals, from which we extract compactness properties. With these ingredients, we can perform an asymptotic analysis technique to prove our main result. (AU)

Processo FAPESP: 23/15567-8 - Propriedades qualitativas para equações diferenciais geométricas
Beneficiário:João Henrique Santos de Andrade
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 21/15139-0 - Propriedades qualitativas para EDPs de quarta ordem não-lineares oriundas na geometria diferencial
Beneficiário:João Henrique Santos de Andrade
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Pós-Doutorado
Processo FAPESP: 20/07566-3 - Propriedades qualitativas para EDPs de ordem alta e não-locais advindas da Geometria Diferencial
Beneficiário:João Henrique Santos de Andrade
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado