Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Finite-dimensional non-associative algebras and codimension growth

Texto completo
Autor(es):
Giambruno, Antonio [1] ; Shestakov, Ivan [2, 3] ; Zaicev, Mikhail [4]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Palermo, Dipartimento Matemat & Applicaz, I-90123 Palermo - Italy
[2] Sobolev Inst Math, Novosibirsk 630090 - Russia
[3] Univ Sao Paulo, Inst Matemat & Estat, BR-05315970 Sao Paulo - Brazil
[4] Moscow MV Lomonosov State Univ, Fac Math & Mech, Dept Algebra, Moscow 119992 - Russia
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: ADVANCES IN APPLIED MATHEMATICS; v. 47, n. 1, p. 125-139, JUL 2011.
Citações Web of Science: 23
Resumo

Let A be a (non-necessarily associative) finite-dimensional algebra over a field of characteristic zero. A quantitative estimate of the polynomial identities satisfied by A is achieved through the study of the asymptotics of the sequence of codimensions of A. It is well known that for such an algebra this sequence is exponentially bounded. Here we capture the exponential rate of growth of the sequence of codimensions for several classes of algebras including simple algebras with a special non-degenerate form, finite-dimensional Jordan or alternative algebras and many more. In all cases such rate of growth is integer and is explicitly related to the dimension of a subalgebra of A. One of the main tools of independent interest is the construction in the free non-associative algebra of multialternating polynomials satisfying special properties. (C) 2010 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 05/60337-2 - Álgebras de Lie e de Jordan, suas representações e generalizações
Beneficiário:Ivan Chestakov
Modalidade de apoio: Auxílio à Pesquisa - Temático