Sobre álgebra homológica de módulos, os funtores Tor e Ext e conjecturas
Projeto e fabricação de antenas banda larga usando o processo de manufatura aditiva
Sistema de bombeamento para extração de petróleo utilizando o motor linear tubular
Texto completo | |
Autor(es): |
Mendoza-Rubio, Victor D.
;
Jorge-Perez, Victor H.
Número total de Autores: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | COLLECTANEA MATHEMATICA; v. N/A, p. 23-pg., 2025-01-27. |
Resumo | |
In this paper, we aim to obtain some results under the condition that the dual of a module over a commutative Noetherian ring has finite Gorenstein dimension. In this direction, we derive results involving vanishing of Ext as well as the freeness or totally reflexivity of modules. For instance, we provide a generalization of a celebrated theorem by Auslander and Bridger, obtain criteria for the totally reflexivity of modules over Cohen-Macaulay rings as well as of locally totally reflexive modules on the punctured spectrum, and recover a result by Araya. Moreover, we prove that the Auslander-Reiten conjecture holds true for all finitely generated modules M over a commutative Noetherian ring R such that G-dim(R)(Hom(R)(M,R)) < infinity and pd(R)(Hom(R)(M,M)) < infinity. Additionally, we derive Gorenstein criteria under the condition that the dual of certain modules is of finite Gorenstein dimension. Furthermore, we explore some applications in the theory of the modules of Kahler differentials of order n >= 1, specifically concerning the k-torsionfreeness of these modules and the Herzog-Vasconcelos conjecture. (AU) | |
Processo FAPESP: | 19/21181-0 - Novas fronteiras na Teoria de Singularidades |
Beneficiário: | Regilene Delazari dos Santos Oliveira |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |
Processo FAPESP: | 22/03372-5 - Sobre a conjectura de Auslander-Reiten |
Beneficiário: | Victor Daniel Mendoza Rubio |
Modalidade de apoio: | Bolsas no Brasil - Doutorado |