Invariant theory and reversible-equivariant vector... - BV FAPESP
Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Invariant theory and reversible-equivariant vector fields

Texto completo
Autor(es):
Antoneli, Fernando [1, 2, 3] ; Baptistelli, Patricia H. [4] ; Dias, Ana Paula S. [1, 2] ; Manoel, Miriam [5]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] CMUP, P-4169007 Oporto - Portugal
[2] Univ Porto, Fac Ciencias, Dept Matemat Pura, P-4169007 Oporto - Portugal
[3] Univ Sao Paulo, Dept Matemat Aplicada, Inst Matemat & Estat, BR-05315970 Sao Paulo - Brazil
[4] Univ Estadual Maringa, Dept Matemat, Ctr Ciencias Exatas, BR-87020900 Maringa, Parana - Brazil
[5] Univ Sao Paulo, Dept Matemat, Inst Ciencias Matemat & Computacao, BR-31560970 Sao Carlos, SP - Brazil
Número total de Afiliações: 5
Tipo de documento: Artigo Científico
Fonte: Journal of Pure and Applied Algebra; v. 213, n. 5, p. 649-663, MAY 2009.
Citações Web of Science: 11
Resumo

In this paper we present results for the systematic study of reversible-equivariant vector fields - namely, in the simultaneous presence of symmetries and reversing symmetries - by employing algebraic techniques from invariant theory for compact Lie groups. The Hilbert-Poincare series and their associated Molien formulae are introduced,and we prove the character formulae for the computation of dimensions of spaces of homogeneous anti-invariant polynomial functions and reversible-equivariant polynomial mappings. A symbolic algorithm is obtained for the computation of generators for the module of reversible-equivariant polynomial mappings over the ring of invariant polynomials. We show that this computation can be obtained directly from a well-known situation, namely from the generators of the ring of invariants and the module of the equivariants. (C) 2008 Elsevier B.V, All rights reserved. (AU)

Processo FAPESP: 07/03519-6 - Sistemas dinamicos equivariantes com estruturas especiais.
Beneficiário:Fernando Martins Antoneli Junior
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado