Propriedade de Specht e identidades polinomiais graduadas para algumas álgebras nã...
Texto completo | |
Autor(es): |
Número total de Autores: 2
|
Afiliação do(s) autor(es): | [1] Univ Estadual Campinas, IMECC, BR-13083970 Campinas, SP - Brazil
Número total de Afiliações: 1
|
Tipo de documento: | Artigo Científico |
Fonte: | Journal of Algebra; v. 321, n. 2, p. 667-681, JAN 15 2009. |
Citações Web of Science: | 2 |
Resumo | |
Let K be a field, chat K = 0. We study the polynomial identities satisfied by Z(2)-graded tensor products of T-prime algebras. Regev and Seeman proved that in a series of cases such tensor products are PI equivalent to T-prime algebras; they conjectured that this is always the case. We deal here with the remaining cases and thus confirm Regev and Seeman's conjecture. For some ``small{''} algebras we can remove the restriction on the characteristic of the base field, and we show that the behaviour of the corresponding graded tensor products is quite similar to that for the usual (ungraded) tensor products. Finally we consider beta-graded tenser products (also called commutation factors) and their identities. We show that Regev's A circle times B theorem holds for beta-graded tensor products whenever the gradings are by finite abelian groups. Furthermore we study the PI equivalence of p-graded tensor products Of T-prime algebras. (C) 2008 Elsevier Inc. All rights reserved. (AU) | |
Processo FAPESP: | 05/60337-2 - Álgebras de Lie e de Jordan, suas representações e generalizações |
Beneficiário: | Ivan Chestakov |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |