Cocharacters and gradedGelfand-Kirillov dimension for PI-algebras
Specht property and graded polynomial identities for some non-associative algebras
Full text | |
Author(s): |
Total Authors: 2
|
Affiliation: | [1] Univ Estadual Campinas, IMECC, BR-13083970 Campinas, SP - Brazil
Total Affiliations: 1
|
Document type: | Journal article |
Source: | Journal of Algebra; v. 321, n. 2, p. 667-681, JAN 15 2009. |
Web of Science Citations: | 2 |
Abstract | |
Let K be a field, chat K = 0. We study the polynomial identities satisfied by Z(2)-graded tensor products of T-prime algebras. Regev and Seeman proved that in a series of cases such tensor products are PI equivalent to T-prime algebras; they conjectured that this is always the case. We deal here with the remaining cases and thus confirm Regev and Seeman's conjecture. For some ``small{''} algebras we can remove the restriction on the characteristic of the base field, and we show that the behaviour of the corresponding graded tensor products is quite similar to that for the usual (ungraded) tensor products. Finally we consider beta-graded tenser products (also called commutation factors) and their identities. We show that Regev's A circle times B theorem holds for beta-graded tensor products whenever the gradings are by finite abelian groups. Furthermore we study the PI equivalence of p-graded tensor products Of T-prime algebras. (C) 2008 Elsevier Inc. All rights reserved. (AU) | |
FAPESP's process: | 05/60337-2 - Lie and Jordan algebras, their representations and generalizations |
Grantee: | Ivan Chestakov |
Support Opportunities: | Research Projects - Thematic Grants |