Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A NONLINEAR PARABOLIC APPROXIMATION OF THE EULER EQUATIONS FOR ISOTHERMAL GAS FLOWS

Texto completo
Autor(es):
Kondo, Cezar [1] ; Shelukhin, Vladimir [2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Fed Sao Carlos, Dept Math, BR-13560 Sao Carlos, SP - Brazil
[2] MA Lavrentyev Hydrodynam Inst, Novosibirsk 630090 - Russia
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: Journal of Hyperbolic Differential Equations; v. 5, n. 4, p. 693-711, DEC 2008.
Citações Web of Science: 0
Resumo

A notion of entropy quasisolution is introduced for the Euler equations of isothermal gas. flows. Such a solution is obtained by means of nonlinear parabolic approximation with a small parameter epsilon. Compensated compactness argument is applied to justify the passage to limit as epsilon -> 0 for the case when the mass density is strictly positive. It is verified that smooth entropy quasisolution is necessarily a classic solution. An example of entropy solution with a shock front is constructed to reveal that it is not an entropy quasisolution. The study is motivated by the explosion physics experiments in which the mass conservation law may be violated at a shock front passing through the gas. (AU)

Processo FAPESP: 05/55874-9 - Vladimir Shelukhin | Lavrentyev Institute of Hydrodynamics - Rússia
Beneficiário:Cezar Issao Kondo
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Internacional