Busca avançada
Ano de início
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Automatic fruit and vegetable classification from images

Texto completo
Rocha, Anderson [1] ; Hauagge, Daniel C. [2] ; Wainer, Jacques [1] ; Goldenstein, Siome [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Inst Comp, Campinas, SP - Brazil
[2] Cornell Univ, Dept Comp Sci, Ithaca, NY 14853 - USA
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: COMPUTERS AND ELECTRONICS IN AGRICULTURE; v. 70, n. 1, p. 96-104, JAN 2010.
Citações Web of Science: 78

Contemporary Vision and Pattern Recognition problems such as face recognition, fingerprinting identification, image categorization, and DNA sequencing often have an arbitrarily large number of classes and properties to consider. To deal with such complex problems using just one feature descriptor is a difficult task and feature fusion may become mandatory. Although normal feature fusion is quite effective for some problems. it can yield unexpected classification results when the different features are not properly normalized and preprocessed. Besides it has the drawback of increasing the dimensionality which might require more training data. To cope with these problems, this paper introduces a unified approach that can combine many features and classifiers that requires less training and is more adequate to some problems than a naive method, where all features are simply concatenated and fed independently to each classification algorithm. Besides that, the presented technique is amenable to continuous learning, both when refining a learned model and also when adding new classes to be discriminated. The introduced fusion approach is validated using a multi-class fruit-and-vegetable categorization task in a semi-controlled environment, such as a distribution center or the supermarket cashier. The results show that the solution is able to reduce the classification error in up to 15 percentage points with respect to the baseline. (C) 2009 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 08/54443-2 - Triagem automática de retinopatias diabéticas: tecnologia da informação contra a cegueira prevenível
Beneficiário:Jacques Wainer
Linha de fomento: Auxílio à Pesquisa - Regular
Processo FAPESP: 05/58103-3 - Classificadores e aprendizado em processamento de imagens e visão computacional
Beneficiário:Anderson de Rezende Rocha
Linha de fomento: Bolsas no Brasil - Doutorado
Processo FAPESP: 08/08681-9 - Análise forense de imagens: detecção de falsificações digitais e spoofing
Beneficiário:Anderson de Rezende Rocha
Linha de fomento: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 07/52015-0 - Métodos de aproximação para computação visual
Beneficiário:Jorge Stolfi
Linha de fomento: Auxílio à Pesquisa - Temático