Extensões do problema de Noether e conjectura de Gelfand-Kirillov para certas clas...
O teorema de terremotos de Thurston em espaços de Teichmüller
Variedades invariantes e conjuntos periódicos limite de folheações descontínuas
Texto completo | |
Autor(es): |
Número total de Autores: 2
|
Afiliação do(s) autor(es): | [1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands - England
[2] Univ Chile, Santiago - Chile
Número total de Afiliações: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | JOURNAL OF COMBINATORIAL THEORY SERIES B; v. 102, n. 1, p. 102-125, JAN 2012. |
Citações Web of Science: | 9 |
Resumo | |
Loebl, Komlos, and Sos conjectured that if at least half of the vertices of a graph G have degree at least some k is an element of N. then every tree with at most k edges is a subgraph of G. Our main result is an approximate version of this conjecture for large enough n = vertical bar V(G)vertical bar, assumed that n = O (k). Our result implies an asymptotic bound for the Ramsey number of trees. We prove that r(T(k), T(m)) <= k + m + o(k + m), as k + m -> infinity. (C) 2011 Elsevier Inc. All rights reserved. (AU) | |
Processo FAPESP: | 05/54051-9 - Problemas finitos e infinitos da teoria dos grafos e hipergrafos. |
Beneficiário: | Maya Jakobine Stein |
Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |