| Texto completo | |
| Autor(es): |
Anderson da Silva Soares
[1]
;
Roberto K. H Galvão
[2]
;
Mário César U Araújo
[3]
;
Sófacles F. C Soares
[4]
;
Luiz Alberto Pinto
Número total de Autores: 5
|
| Afiliação do(s) autor(es): | [1] Instituto Tecnológico de Aeronáutica. Divisão de Ciência da Computação Divisão de Engenharia Eletrônica - Brasil
[2] Instituto Tecnológico de Aeronáutica. Divisão de Engenharia Eletrônica - Brasil
[3] Universidade Federal da Paraíba. CCEN. Departamento de Química - Brasil
[4] Universidade Federal da Paraíba. CCEN. Departamento de Química - Brasil
Número total de Afiliações: 5
|
| Tipo de documento: | Artigo Científico |
| Fonte: | Journal of the Brazilian Chemical Society; v. 21, n. 9, p. 1626-1634, 2010-00-00. |
| Resumo | |
The application of sophisticated chemometrics techniques to large datasets has been made possible by continuing technological improvements in off-the-shelf computers. Recently, such improvements have been mainly achieved by the introduction of multi-core processors. However, the efficient use of multi-core hardware requires the development of software that properly address parallel computing. This paper is concerned with the implementation of parallelism using the Matlab Parallel Computing Toolbox, which requires only simple modifications to existing chemometrics code in order to exploit the benefits of multi-core processing. By using this software tool, it is shown that parallel implementations may provide substantial computational gains. In particular, the present study considers the problem of variable selection employing the successive projections algorithm and the genetic algorithm, as well as the use of cross-validation in partial least squares. For demonstration, two analytical applications are presented: determination of protein in wheat by near-infrared reflectance spectrometry and classification of edible vegetable oils by square-wave voltammetry. By using the proposed parallel computing implementations, computational gains of up to 204% were obtained. (AU) | |
| Processo FAPESP: | 06/58850-6 - Diagnóstico, prognóstico e acomodação de falhas em sistemas dinâmicos |
| Beneficiário: | Takashi Yoneyama |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |
| Processo FAPESP: | 07/57803-7 - Deteccao e diagnostico de falhas empregando tecnicas de classificacao de padroes com selecao de atributos. |
| Beneficiário: | Anderson da Silva Soares |
| Modalidade de apoio: | Bolsas no Brasil - Doutorado |