Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Estimation methods for multivariate Tobit confirmatory factor analysis

Texto completo
Autor(es):
Costa, D. R. ; Lachos, V. H. [1] ; Bazan, J. L. [2] ; Azevedo, C. L. N. [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Dept Stat, Campinas, SP - Brazil
[2] Univ Sao Paulo, Dept Appl Math & Stat, BR-05508 Sao Paulo - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: COMPUTATIONAL STATISTICS & DATA ANALYSIS; v. 79, p. 248-260, NOV 2014.
Citações Web of Science: 4
Resumo

Tobit confirmatory factor analysis is particularly useful in analysis of multivariate data with censored information. Two methods for estimating multivariate Tobit confirmatory factor analysis models with covariates from a Bayesian and likelihood-based perspectives are proposed. In contrast with previous likelihood-based developments that consider Monte Carlo simulations for maximum likelihood estimation, an exact EM-type algorithm is proposed. Also, the estimation of the parameters via MCMC techniques by considering a hierarchical formulation of the model is explored. Bayesian case deletion influence diagnostics based on the q-divergence measure and model selection criteria is also developed and considered in the analysis of a real dataset related to the education assessment field. In addition, a simulation study is conducted to compare the performance of the proposed method with the traditional confirmatory factor analysis. The results show that both methods offer more precise inferences than the traditional confirmatory factor analysis, which ignores the information about the censoring threshold. (C) 2014 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 14/02938-9 - Estimação e diagnóstico em modelos de efeitos mistos para dados censurados usando misturas de escala skew-normal
Beneficiário:Víctor Hugo Lachos Dávila
Modalidade de apoio: Auxílio à Pesquisa - Regular