Busca avançada
Ano de início
Entree


Dicotomias em equações diferenciais ordinárias generalizadas e aplicações

Texto completo
Autor(es):
Fábio Lima Santos
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Data de defesa:
Membros da banca:
Everaldo de Mello Bonotto; Ma To Fu; Marta Cilene Gadotti; Marcelo José Dias Nascimento; Bruno Luis de Andrade Santos
Orientador: Márcia Cristina Anderson Braz Federson
Resumo

Neste trabalho, estabelecemos a teoria de dicotomias para equações diferenciais ordinárias generalizadas, introduzindo os conceitos de dicotomias para essas equações generalizadas, estudando as suas propriedades e propondo resultados novos. Investigamos condições para a existência de soluções limitadas e condições para a existência de dicotomia exponencial. Utilizando teoremas de correspondência entre equações diferenciais ordinárias generalizadas e outras equações, traduzimos os resultados obtidos para os casos particulares de dicotomias para equações diferenciais em medida e para equações diferenciais com impulsos. O fato de trabalharmos no ambiente das equações diferenciais ordinárias generalizadas faz com que os resultados obtidos para os casos particulares possam envolver funções com muitas descontinuidades e de variação ilimitada. (AU)

Processo FAPESP: 11/24027-0 - Dicotomias em equações diferenciais generalizadas e aplicações
Beneficiário:Fábio Lima Santos
Modalidade de apoio: Bolsas no Brasil - Doutorado