Busca avançada
Ano de início
Entree


Órbitas periódicas de certas equações diferenciais acopladas

Texto completo
Autor(es):
Douglas Duarte Novaes
Número total de Autores: 1
Tipo de documento: Dissertação de Mestrado
Imprenta: Campinas, SP.
Instituição: Universidade Estadual de Campinas (UNICAMP). Instituto de Matemática, Estatística e Computação Científica
Data de defesa:
Membros da banca:
Marco Antonio Teixeira; Luis Fernando de Osorio Mello; Regilene Delazari dos Santos Oliveira
Orientador: Marco Antonio Teixeira
Resumo

O Método de Averaging é uma ferramenta clássica, muito útil no estudo do comportamento de sistemas dinâmicos suaves. Uma das utilidades de tal método consiste em transformar o problema de encontrar soluções periódicas, de um sistema dinâmico, em um problema de se encontrar soluções de uma determinada equação algébrica. Os resultados clássicos, para o estudo de soluções periódicas de sistemas dinâmicos, assumem que tais sistemas sejam, no mínimo, de classe C2. Recentemente, utilizando principalmente a Teoria do Grau de Brouwer, o Método de Averaging foi estendido para o estudo de soluções periódicas de sistemas dinâmicos, assumindo somente a hipótese de continuidade do sistema. Por outro lado, o campo da matemática que versa sobre os sistemas dinâmicos descontínuos, chamados frequentemente de Sistemas de Filippov, teve nos últimos anos um rápido desenvolvimento. Tal campo, se tornou, certamente, uma das fronteira comuns entre a Matemática, a Física, a Engenharia e outras áreas afins. Apesar do rápido desenvolvimento que essa área da matemática vem tendo, existem ainda poucas ferramentas para se trabalhar com os Sistemas de Filippov, bem como, inúmeros problemas em abertos. Desenvolvemos aqui, uma extensão do Método de Averaging que nos permite estudar soluções periódicas de uma classe de Sistemas de Filippov. Estão contidos nessa classe de Sistemas de Filippov estudada, os modelos matem áticos de inúmeros fenômenos mecânicos. Dentre eles, estudamos com detalhes o fenômeno de sincronização de osciladores harmônicos fracamente acoplados. Apontamos também, uma série de problemas similares, a ser trabalhado num futuro próximo, envolvendo complicações típicas dos Sistemas de Filippov (AU)

Processo FAPESP: 11/03896-0 - Órbitas periódicas de certas equações diferenciais acopladas
Beneficiário:Douglas Duarte Novaes
Modalidade de apoio: Bolsas no Brasil - Mestrado