Busca avançada
Ano de início
Entree

Grupos topológicos universais

Processo: 12/20084-1
Modalidade de apoio:Bolsas no Brasil - Pós-Doutorado
Data de Início da vigência: 01 de maio de 2013
Data de Término da vigência: 30 de abril de 2016
Área de conhecimento:Ciências Exatas e da Terra - Matemática - Análise
Pesquisador responsável:Valentin Raphael Henri Ferenczi
Beneficiário:Brice Rodrigue Mbombo Dempowo
Instituição Sede: Instituto de Matemática e Estatística (IME). Universidade de São Paulo (USP). São Paulo , SP, Brasil
Assunto(s):Grupos topológicos   Espaços poloneses   Análise funcional
Palavra(s)-Chave do Pesquisador:espaços Polonêses | grupos polonêses | grupos topologicos | Grupos universais | Análise funcional

Resumo

A questão sobre a existência de um grupo topológico universal suscita um grande interesse por parte de muitos matemáticos há alguns anos. A pergunta no caso de grupos poloneses foi formulada por Ulam em 1935 e resolvida por Uspenskij em 1986. Outras respostas afirmativas foram dadas à questão da existência de um grupo polonês universal, Uspenskij em 1990, e Ben Yacoov em 2012, a solução sendo o grupo de isometrias de um espaço polonês universal natural (o espaço de Urysohn para Uspenskij, o espa\c co de Gurarij para Ben Yacoov) .A questão da existência de um grupo topológico de peso não-enumerável segue em aberto. O objetivo deste projeto é examinar esta questão, procurando soluções que sejam grupos de isometrias de objetos universais de peso não-enumerável; encontrar outros exemplos naturais ou demonstrações mais naturais dos resultados conhecidos no caso separável; e estudar alguns outros problemas relacionados.

Matéria(s) publicada(s) na Agência FAPESP sobre a bolsa:
Mais itensMenos itens
Matéria(s) publicada(s) em Outras Mídias ( ):
Mais itensMenos itens
VEICULO: TITULO (DATA)
VEICULO: TITULO (DATA)

Publicações científicas (6)
(Referências obtidas automaticamente do Web of Science e do SciELO, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores)
BARTOSOVA, DANA; LOPEZ-ABAD, JORDI; LUPINI, MARTINO; MBOMBO, BRICE. The Ramsey property for Banach spaces and Choquet simplices, and applications. COMPTES RENDUS MATHEMATIQUE, v. 355, n. 12, p. 1242-1246, . (12/20084-1, 13/24827-1, 13/14458-9)
FERENCZI, V; LOPEZ-ABAD, J.; MBOMBO, B.; TODORCEVIC, S.. Amalgamation and Ramsey properties of L-p spaces. ADVANCES IN MATHEMATICS, v. 369, p. 76-pg., . (16/25574-8, 12/20084-1, 13/24827-1, 13/11390-4)
BARTOSOVA, DANA; LOPEZ-ABAD, JORDI; LUPINI, MARTINO; MBOMBO, BRICE. THE RAMSEY PROPERTIES FOR GRASSMANNIANS OVER R, C. COMBINATORICA, . (12/20084-1, 13/24827-1, 13/14458-9)
BARTOSOVA, DANA; LOPEZ-ABAD, JORDI; LUPINI, MARTINO; MBOMBO, BRICE. The Ramsey property for operator spaces and noncommutative Choquet simplices. JOURNAL OF FUNCTIONAL ANALYSIS, v. 281, n. 9, . (13/24827-1, 12/20084-1, 13/14458-9, 16/25574-8)
BARROSO, CLEON S.; MBOMBO, BRICE R.; PESTOV, VLADIMIR G.. On topological groups with an approximate fixed point property. Anais da Academia Brasileira de Ciências, v. 89, n. 1, p. 19-30, . (12/20084-1)
BARTOSOVA, DANA; LOPEZ-ABAD, JORDI; LUPINI, MARTINO; MBOMBO, BRICE. The Ramsey property for Banach spaces and Choquet simplices. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, v. 24, n. 4, p. 36-pg., . (12/20084-1, 13/24827-1, 13/14458-9)