Busca avançada
Ano de início
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Towards a representative assessment of methane and nitrous oxide emissions and mitigation options from manure management of beef cattle feedlots in Brazil

Texto completo
Costa Junior, C. [1] ; Cerri, C. E. P. [2] ; Dorich, C. D. [3] ; Maia, S. M. F. [4] ; Bernoux, M. [5] ; Cerri, C. C. [6]
Número total de Autores: 6
Afiliação do(s) autor(es):
[1] Univ Sao Paulo. Ctr Nucl Energy Agr
[2] Univ Sao Paulo. Luiz de Queiroz Coll Agr
[3] Univ New Hampshire. Inst Study Earth Ocean & Space
[4] Inst Fed Alagoas IFAL. BR-57035350 Maceio
[5] SupAgro. IRD
[6] Univ Sao Paulo. Ctr Nucl Energy Agr
Número total de Afiliações: 6
Tipo de documento: Artigo Científico
Citações Web of Science: 0

We conducted an inventory to estimate methane (CH4) and nitrous oxide (N2O) emissions from beef cattle feedlot manure in Brazil for the year of 2010. The aim was to determine (CH4) and (N2O) emissions from beef cattle feedlot manure in Brazil using the IPCC United Nations Intergovernmental Panel on Climate Change approach and present a framework that structures priority research for decreasing uncertainties and assessing mitigation scenarios. The analysis consisted of the use of specific farm-scale activity data applied to the 2006 (IPCC) guideline equations for animal manure management updated with specific parameters for Brazil conditions. Uncertainties were assessed by error-propagation technique. The results indicated that 376.6 GgCO(2)eq were emitted from the manure management of beef cattle feedlots in Brazil in 2010. Nitrous oxide accounted for 61 % of total emissions, out of which 69 % came from direct emissions. Uncertainties were high, comprising -30 to +80 %. Solid storage-heap and field application were the largest sources of greenhouse gas (GHG) emissions (81 % of total emissions) and held most of the variance in uncertainties. Although, due to limitations in the IPCC methodology for integrating GHG emissions at farm-scale, we could not account for emissions occurring from different lengths of time in each manure management compartment prior to field application. As a consequence, this GHG inventory lacks consistence. The use of more robust methodologies such as process-based models are recommended for improvements, however they are currently unavailable because there is a lack of key data for Brazil conditions for validating those models. Our literature revision shows that the most effective research for raising those data would track emissions from manure: generated from male Nellore (Bos Indicus) cattle fed for 90 days with a high-energy diet, removed only at the end of feeding period and held in heaps over 60 days before being applied to maize (Zea mays L.) cropping fields under clay soil. The proposed research and methodology approaches described in this work is required to establish a manure management emission assessment that will become more responsive to the changing practices on Brazilian beef cattle feedlots and, consequently, permitting implication of mitigation scenarios to be ascertained. (AU)

Processo FAPESP: 10/05111-7 - Emissões de metano e óxido nitroso pelo manejo dos dejetos de bovinos de corte confinados no Brasil: caracterização, medidas experimentais e modelagem matemática
Beneficiário:Ciniro Costa Junior
Linha de fomento: Bolsas no Brasil - Doutorado
Processo FAPESP: 12/02642-7 - Simulação da emissão e mitigação de gases de efeito estufa pelo manejo de dejetos de bovinos de corte confinados no Brasil através da utilização do modelo matemático Manure-DNDC
Beneficiário:Ciniro Costa Junior
Linha de fomento: Bolsas no Exterior - Estágio de Pesquisa - Doutorado
Processo FAPESP: 10/17837-2 - Balanço dos gases do efeito estufa na pecuária bovina de corte no Centro-Oeste do Brasil: bases técnicas para pecuária de baixo carbono
Beneficiário:Carlos Clemente Cerri
Linha de fomento: Auxílio à Pesquisa - Regular