Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

On Hamiltonian minimal submanifolds in the space of oriented geodesics in real space forms

Texto completo
Autor(es):
Georgiou, Nikos [1] ; Lobos, Guillermo A. [2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Waterford Inst Technol, Dept Comp & Math, Waterford - Ireland
[2] Univ Fed Sao Carlos, Dept Math, BR-13560 Sao Carlos, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: ARCHIV DER MATHEMATIK; v. 106, n. 3, p. 285-293, MAR 2016.
Citações Web of Science: 0
Resumo

We prove that a deformation of a hypersurface in an (n + 1)-dimensional real space form induces a Hamiltonian variation of the normal congruence in the space of oriented geodesics. As an application, we show that every Hamiltonian minimal submanifold in (resp. ) with respect to the (para-)Kahler Einstein structure is locally the normal congruence of a hypersurface in (resp. ) that is a critical point of the functional , where k (i) denote the principal curvatures of and . In addition, for , we prove that every Hamiltonian minimal surface in (resp. ), with respect to the (para-)Kahler conformally flat structure, is the normal congruence of a surface in (resp. ) that is a critical point of the functional (resp. ), where H and K denote, respectively, the mean and Gaussian curvature of . (AU)

Processo FAPESP: 10/08669-9 - Congruências normais e subvariedades lagrangeanas nos espaços de geodésicas
Beneficiário:Nikos Georgiou
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado