Teoria de subvariedades e teoria de Morse em dimensão finita e infinita
Hipersuperfícies mínimas completas em espaços simétricos não-compactos
Texto completo | |
Autor(es): |
Número total de Autores: 2
|
Afiliação do(s) autor(es): | [1] Waterford Inst Technol, Dept Comp & Math, Waterford - Ireland
[2] Univ Fed Sao Carlos, Dept Math, BR-13560 Sao Carlos, SP - Brazil
Número total de Afiliações: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | ARCHIV DER MATHEMATIK; v. 106, n. 3, p. 285-293, MAR 2016. |
Citações Web of Science: | 0 |
Resumo | |
We prove that a deformation of a hypersurface in an (n + 1)-dimensional real space form induces a Hamiltonian variation of the normal congruence in the space of oriented geodesics. As an application, we show that every Hamiltonian minimal submanifold in (resp. ) with respect to the (para-)Kahler Einstein structure is locally the normal congruence of a hypersurface in (resp. ) that is a critical point of the functional , where k (i) denote the principal curvatures of and . In addition, for , we prove that every Hamiltonian minimal surface in (resp. ), with respect to the (para-)Kahler conformally flat structure, is the normal congruence of a surface in (resp. ) that is a critical point of the functional (resp. ), where H and K denote, respectively, the mean and Gaussian curvature of . (AU) | |
Processo FAPESP: | 10/08669-9 - Congruências normais e subvariedades lagrangeanas nos espaços de geodésicas |
Beneficiário: | Nikos Georgiou |
Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |