| Texto completo | |
| Autor(es): |
Número total de Autores: 2
|
| Afiliação do(s) autor(es): | [1] Univ Fed Rio de Janeiro, Dept Matemat Aplicada, Av Athos da Silveira Ramos 149, BR-21941909 Rio De Janeiro, RJ - Brazil
[2] Univ Sao Paulo, Dept Matemat, Inst Matemat & Estat, Rua Matao, 1010 Cidade Univ, BR-05508090 Sao Paulo, SP - Brazil
Número total de Afiliações: 2
|
| Tipo de documento: | Artigo Científico |
| Fonte: | CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS; v. 55, n. 2 APR 2016. |
| Citações Web of Science: | 1 |
| Resumo | |
The first result of this paper is that every contact form on RP3 sufficiently C-infinity-close to a dynamically convex contact form admits an elliptic-parabolic closed Reeb orbit which is 2-unknotted, has self-linking number -1/2 and transverse rotation number in (1/2, 1]. Our second result implies that any p-unknotted periodic orbit with self-linking number -1/p of a dynamically convex Reeb flow on a lens space of order p is the binding of a rational open book decomposition, whose pages are global surfaces of section. As an application we show that in the planar circular restricted three-body problem for energies below the first Lagrange value and large mass ratio, there is a special link consisting of two periodic trajectories for the massless satellite near the smaller primary-lunar problem-with the same contact-topological and dynamical properties of the orbits found by Conley (Commun Pure Appl Math 16: 449-467, 1963) for large negative energies. Both periodic trajectories bind rational open book decompositions with disk-like pages which are global surfaces of section. In particular, one of the components is an elliptic-parabolic periodic orbit. (AU) | |
| Processo FAPESP: | 13/20065-0 - Dinâmica simplética em dimensão 3 |
| Beneficiário: | Pedro Antonio Santoro Salomão |
| Modalidade de apoio: | Auxílio à Pesquisa - Regular |
| Processo FAPESP: | 11/16265-8 - Dinâmica em baixas dimensões |
| Beneficiário: | Edson Vargas |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |