Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Defining universality classes for three different local bifurcations

Texto completo
Autor(es):
Leonel, Edson D. [1, 2]
Número total de Autores: 1
Afiliação do(s) autor(es):
[1] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste - Italy
[2] Univ Estadual Paulista, UNESP, Dept Fis, Av 24A, 1515 Bela Vista, BR-13506900 Rio Claro, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION; v. 39, p. 520-528, OCT 2016.
Citações Web of Science: 1
Resumo

The convergence to the fixed point at a bifurcation and near it is characterized via scaling formalism for three different types of local bifurcations of fixed points in differential equations, namely: (i) saddle-node; (ii) transcritical; and (iii) supercritical pitchfork. At the bifurcation, the convergence is described by a homogeneous function with three critical exponents alpha, beta and z. A scaling law is derived hence relating the three exponents. Near the bifurcation the evolution towards the fixed point is given by an exponential function whose relaxation time is marked by a power law of the distance of the bifurcation point with an exponent delta. The four exponents alpha, beta, z and delta can be used to defined classes of universality for the local bifurcations of fixed points in differential equations. (C) 2016 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 12/23688-5 - Expoentes e leis de escala, transições de fase e propriedades de transporte em sistemas dependentes do tempo
Beneficiário:Edson Denis Leonel
Modalidade de apoio: Auxílio à Pesquisa - Regular