Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Asymptotic Approach to the Generalized Brinkman's Equation with Pressure-Dependent Viscosity and Drag Coefficient

Texto completo
Autor(es):
Pazanin, I. ; Pereira, M. C. ; Suarez-Grau, F. J.
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF APPLIED FLUID MECHANICS; v. 9, n. 6, p. 3101-3107, 2016.
Citações Web of Science: 0
Resumo

In this paper we investigate the fluid flow through a thin (or long) channel filled with a fluid saturated porous medium. We are motivated by some important applications of the porous medium flow in which the viscosity of fluids can change significantly with pressure. In view of that, we consider the generalized Brinkman's equation which takes into account the exponential dependence of the viscosity and the drag coefficient on the pressure. We propose an approach using the concept of the transformed pressure combined with the asymptotic analysis with respect to the thickness of the channel. As a result, we derive the asymptotic solution in the explicit form and compare it with the solution of the standard Brinkman's model with constant viscosity. To our knowledge, such analysis cannot be found in the existing literature and, thus, we believe that the provided result could improve the known engineering practice. (AU)

Processo FAPESP: 13/22275-1 - Sistemas dinâmicos gerados por equações parabólicas semilineares
Beneficiário:Marcone Corrêa Pereira
Modalidade de apoio: Auxílio à Pesquisa - Regular