Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A Critical Case for the Spiral Stability for 2 x 2 Discontinuous Systems and an Application to Recursive Neural Networks

Texto completo
Autor(es):
Berardi, Marco ; D'Abbicco, Marcello
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: Mediterranean Journal of Mathematics; v. 13, n. 6, p. 4829-4844, DEC 2016.
Citações Web of Science: 0
Resumo

We consider a piecewise smooth system, whose solutions locally spirally move around an equilibrium point which lies at the intersection of two discontinuity surfaces. We find a sufficient condition for the stability of this point, in the limit case in which a first-order approximation theory does not give an answer. This condition, depending on the vector field and its Jacobian evaluated at the equilibrium point, is trivially satisfied for piecewise-linear systems, whose first-order part is a diagonal matrix with negative entries. We show how our stability results may be applied to discontinuous recursive neural networks for which the matrix of self-inhibitions of the neurons does not commute with the connection weight matrix. In particular, we find a nonstandard relation between the ratio of the self-inhibition speeds and the structure of the connection weight matrix, which determines the stability. (AU)

Processo FAPESP: 13/15140-2 - Estimativas a priori para equações semilineares hiperbólicas
Beneficiário:Marcello Dabbicco
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores
Processo FAPESP: 14/02713-7 - Soluções globais para equações de onda semi-lineares com coeficientes variáveis
Beneficiário:Marcello Dabbicco
Modalidade de apoio: Bolsas no Brasil - Jovens Pesquisadores