Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Concentration function for the skew-normal and skew-t distributions, with application in robust Bayesian analysis

Texto completo
Autor(es):
Godoi, Luciana G. ; Branco, Marcia D. ; Ruggeri, Fabrizio
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS; v. 31, n. 2, p. 373-393, MAY 2017.
Citações Web of Science: 1
Resumo

Data from many applied fields exhibit both heavy tail and skewness behavior. For this reason, in the last few decades, there has been a growing interest in exploring parametric classes of skew-symmetrical distributions. A popular approach to model departure from normality consists of modifying a symmetric probability density function in a multiplicative fashion, introducing skewness. An important issue, addressed in this paper, is the introduction of some measures of distance between skewed versions of probability densities and their symmetric baseline. Different measures provide different insights on the departure from symmetric density functions: we analyze and discuss L-1 distance, J-divergence and the concentration function in the normal and Student-t cases. Multiplicative contaminations of distributions can be also considered in a Bayesian framework as a class of priors and the notion of distance is here strongly connected with Bayesian robustness analysis: we use the concentration function to analyze departure from a symmetric baseline prior through multiplicative contamination prior distributions for the location parameter in a Gaussian model. (AU)

Processo FAPESP: 12/21788-2 - Modelos de regressão e aplicações
Beneficiário:Heleno Bolfarine
Modalidade de apoio: Auxílio à Pesquisa - Temático