Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Coincidence and self-coincidence of maps between spheres

Texto completo
Autor(es):
Goncalves, Daciberg L. ; Randall, Duane
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: Journal of Fixed Point Theory and Applications; v. 19, n. 2, p. 1011-1040, JUN 2017.
Citações Web of Science: 0
Resumo

Let f, g: be a pair of maps between spheres. We further explore previous results about the coincidence of a pair of maps between spheres. We give special attention to the case of self-coincidence (i.e., (f, f): ) in which we consider the question of making the pair homotopy disjoint by a small deformation whenever the pair can be made coincidence free. When M is the sphere , we basically update the results from {[}C. R. Acad. Sci. Paris Ser. I 342 (2006), 511-513] based on the new results of the Kervaire invariant one problem. When M is either the sphere or the sphere S (4n) , we classify all pairs () which are homotopy disjoint; and for maps f such that (f, f) can be deformed to coincidence free, the ones such that (f, f) can be deformed to coincidence free by a small deformation. Finally, we give families of functions such that () is homotopy disjoint but not by a small deformation. (AU)

Processo FAPESP: 12/24454-8 - Topologia algébrica, geométrica e diferencial
Beneficiário:Daciberg Lima Gonçalves
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 08/57607-6 - Topologia algébrica geométrica e diferencial
Beneficiário:Daciberg Lima Gonçalves
Modalidade de apoio: Auxílio à Pesquisa - Temático