Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Number of rational branches of a singular plane curve over a finite field

Texto completo
Autor(es):
Arakelian, Nazar
Número total de Autores: 1
Tipo de documento: Artigo Científico
Fonte: FINITE FIELDS AND THEIR APPLICATIONS; v. 48, p. 87-102, NOV 2017.
Citações Web of Science: 0
Resumo

Let F be a plane singular curve defined over a finite field F-q. Via results of {[}11] and {[}1], the linear system of plane curves of a given degree passing through the singularities of F provides potentially good bounds for the number of points on a nonsingular model of F. In this note, the case of a curve with two singularities such that the sum of their multiplicities is precisely the degree of the curve is investigated in more depth. In particular, such plane models are completely characterized, and for p > 3, a curve of this type attaining one of the obtained bounds is presented. (C) 2017 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 13/00564-1 - Pontos racionais em curvas algébricas sobre corpos finitos.
Beneficiário:Nazar Arakelian
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado