Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Positive Definite Functions on Complex Spheres and their Walks through Dimensions

Texto completo
Autor(es):
Massa, Eugenio [1] ; Peron, Ana Paula [1] ; Porcu, Emilio [2, 3]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] ICMC USP Sao Carlos, Dept Matemat, Caixa Postal 668, BR-13560970 Sao Carlos, SP - Brazil
[2] Univ Newcastle, Chair Spatial Analyt Methods, Sch Math & Stat, Callaghan, NSW - Australia
[3] Univ Tecn Federico Santa Maria, Dept Math, Ave Espana 1680, Valparaiso 230123 - Chile
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: Symmetry Integrability and Geometry-Methods and Applications; v. 13, 2017.
Citações Web of Science: 3
Resumo

We provide walks through dimensions for isotropic positive definite functions defined over complex spheres. We show that the analogues of Montee and Descente operators as proposed by Beatson and zu Castell {[}J. Approx. Theory 2 2 1 (2017), 22-37] on the basis of the original Matheron operator {[}Les variables regionalisees et leur estimation, Masson, Paris, 1965], allow for similar walks through dimensions. We show that the Montee operators also preserve, up to a constant, strict positive definiteness. For the Descente operators, we show that strict positive definiteness is preserved under some additional conditions, but we provide counterexamples showing that this is not true in general. We also provide a list of parametric families of (strictly) positive definite functions over complex spheres, which are important for several applications. (AU)

Processo FAPESP: 16/03015-7 - Funções positivas definidas
Beneficiário:Ana Paula Peron
Linha de fomento: Bolsas no Exterior - Pesquisa
Processo FAPESP: 14/25796-5 - Positividade (estrita) definida e diferenciabilidade
Beneficiário:Ana Paula Peron
Linha de fomento: Auxílio à Pesquisa - Regular
Processo FAPESP: 14/25398-0 - Equações e sistemas elípticos com vários tipos de interação com o espectro
Beneficiário:Eugenio Tommaso Massa
Linha de fomento: Auxílio à Pesquisa - Regular